Learned classification of sonar targets using a massively parallel network
نویسندگان
چکیده
We have applied massively parallel learning networks to the classification of sonar returns from two undersea targets and have studied the ability of networks to correctly classify both training and testing examples. Networks with an intermediate layer of hidden processing units achieved a classification accuracy as high as 100 percent on a training set of 104 returns. These networks correctly classified a test set of 104 returns not contained in the training set with an accuracy of up to 90.4 percent. Networks without an intermediate layer of processing units achieved only 73.1 percent correct on the same test set. Performance improved and the variability due to the initial conditions for training decreased with the number of hidden units. The effect of training set design on test set performance was also examined. The performance of a three-layered network was better than trained human listeners and the network generalized better than a nearest neigh-
منابع مشابه
Training Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
متن کاملA Modified Grey Wolf Optimizer by Individual Best Memory and Penalty Factor for Sonar and Radar Dataset Classification
Meta-heuristic Algorithms (MA) are widely accepted as excellent ways to solve a variety of optimization problems in recent decades. Grey Wolf Optimization (GWO) is a novel Meta-heuristic Algorithm (MA) that has been generated a great deal of research interest due to its advantages such as simple implementation and powerful exploitation. This study proposes a novel GWO-based MA and two extra fea...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملEffective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network
In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experien...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Acoustics, Speech, and Signal Processing
دوره 36 شماره
صفحات -
تاریخ انتشار 1988